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TRIPOD OPERATORS FOR THE INTERPRETATION OF RANGE IMAGES

1. Introduction

During the past decade, research in the acquisition and use of range images in com-
puter vision has increased greatly. This is due to their relatively complete and explicit

representation of 3-D shape information, in contrast to intensity images, from which the

recovery of shape is known to be very difficult. Work in this area has led to the develop-

ment of increasingly fast and aur, rangefinders [6] and to a variety of increasingly
effective methods for recognizing and locating modeled objects in range images. The

fundamental limits of performance have, however, not nearly been reached. This paper

pursues the goal of high speed object recognition by introducing a class of range image
operators that extract local shape information that is invariant under rotations and transla-
tions of the object with respect to the rangefinder. These operators can be applied to 3-D

objects of any shape. They exploit the fact that a small number (e.g., four to six ) of

range measurements often contain a large amount of information about the identity and

pose of objects on which they lie, particularly when the range data is very precise. We
will develop the operators in the context of the problem of recognizing and locating
modeled rigid 3-D objects in range images, but will suggest other potential applications

for them in vision and tactile sensing. The operators arose from studying the problem of

efficiently mapping small sets of range measurements into sets of possible object poses.
This was achieved by structuring both the range data and the pose representation so that
the mapping involves involves sets small enough to compute offline and store. The pur-
pose of this paper is to introduce the tripod operator and describe a wide variety of its
properties and potential applications, in the interest of stimulating other work.

The most closely related previous work is by Grimson [1,5], who extensively

developed the idea of searching for associations between image features and model ele-
ments consistent with geometric constraints among the model elements, using interpreta-

tion trees to represent the consistent hypothesised associations (interpretations). This
general approach was introduced by several authors [2,3,4,10] within a short time. Our
work differs from these efforts in that we provide mechanisms for efficiently prestoring

model information so that the costly early stages of interpretation tree generation can be

avoided at recognition time. In contrast to [5], we use both dense range images and

sparse sets automatically chosen from such images.

Manuscript approved December 17, 1990.



1.1 Useful Definitions and Concepts
We will define some terminology and review some concepts in the interest of a con-

cise presentation. Some of the concepts are from previous work on interpretation trees.

Suppose we represent a rigid 3-D object by a polyhedron with M facets (f}, 1 i _ M.
We denote by pi a pixel taken from a range image. We regard a range pixel here as sim-

ply a point in space measured by a rangefinder, represented by a cartesian three-vector.
We define a range point as either a range pixel or a point on an interpolated surface
between range pixels. A pairing is defined as an association of a range pixel with a

model facet. This is used to represent the hypothesis that the specified range point actu-

ally lies on the region of an object represented by the specified model facet. A set of k
pairings will be called a k-interpretation. A k-interpretation will be called a partial

interpretation if k is less than the size of some set of range points that we wish to inter-

pret. For example, (PI, fiT, (P2, f22) (P3, f74)) is a 3-interpretation. Note that if f17 ,

f2, and f74 were all infinitely small facets, then the 3-interpretation would imply a pre-

cise pose for the object, provided that Pl, P2, and P3 are not colinear, since fixing three

noncolinear points belonging to a rigid object prevents the object from moving. A pose

is defined as a complete specification of the location and orientation of an object,

corresponding to an element of the group R36SO(3). One direct way to do this is by
specifying the six coordinates (X,YZ, 8,,,); the three cartesian coordinates of a refer-
ence point on the object and three Euler angles, respectively. A second way is to specify
the location in space of each of three specified (non-colinear) points on the objects

model's surface. There are, of course, many other ways to represent pose.

1.2 Recognition with a Small Number of Range Points; Continuous Analysis

To motivate the introduction of tripod operators, we will consider a problem of

recognizing and locating (determining the pose of) a modeled object in a range image
using a small number of range points pi. In this section we will make the argument that a
great deal of information about identity and pose is contained in a few points. Later we

will exploit this by developing efficient "points to poses" mapping procedures. For the

time being, we will assume that the grouping problem is solved, that is, pi all lie on the

surface of one object. We will also temporarily assume zero uncertainty in both the

model and the range measurements. We will later discuss the problems of uncertainty

and grouping, since they are crucial in any practical object recognition system. The prob-
lem now is to determine what rigid motion(s) of the model, if any, will cause all the pi to

lie on the surface of the model. Note that since it is the relative pose of the model and

the range data that is of interest, we will speak sometimes of motions of the model, and

sometimes of motions of the range data, according to convenience. We will not yet
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invoke a particular representation of 3-D shape. We will now successively impose the
constraints that each pi lies on the surface of the object and note the effect on our

knowledge of the object's pose and identity. Initially the model is free in all six degrees
of freedom (DOF). Then, as we successively require each pi to lie on the model's sur-

face, successively fewer DOF of motion are available to the model that we are trying to
match to the points. That is, the set of possible poses is reduced. If no pose is possible,
recognition fails for that model. Usually, introducing each additional point reduces the
number of DOF by one. If this is not the case, we say that there are object symmetries.
We will assume the case of no such symmetries until section 1.3. The following discus-

sion will use the example illustrated in Fig. 1, which depicts six points obtained furn
range image of the surface of a solid rectangle for which we have a model

One Point: If the model is moved into contact with Pl, it has five remaining degrees of
freedom; P, can lie anywhere on the 2-D surface of the model, and the model is free to
rotate about Pl, yielding five DOE.
Two Points: If the model's pose is further constrained by contact with P2, then if the

modeled object is sufficiently large compared to d 12  1 "P I-P2 II, then P, can lie any-
where on the 2-D surface of the object. For any such placement, P2 can then lie anywhere

on the space curve formed by the intersection of the model surface and a sphere centered
at Pl, constituting a third DOE. For any such placement of two points, the model is free

to rotate about the line connecting Pi and p2, yielding a total of four DOE. Note that if
d 12 is sufficiently large compared with the model, P, and P2 could not both lie on the
model. Hence, two points contain some recognition information, since they can some-

times be used to eliminate candidate models.
Three Points: Further constraining P3 to lie on the model, for any sufficiently large

object, the object is free to move as above, except that the rotation about the line connect-

ing P, and p2 is prevented. Thus three DOF remain. Note in Fig. 1 that the point P, can
still be slid anywhere on the model surface without violating the three point constraint.
Thus we have not yet invoked much information about the object's shape. However,
three points provide slightly more recognition information than two, since some objects
fitting two given points might not be large enough to fit three.
Four Points: Further constraining P4 to lie on the model, we see in Fig. 1 that only two

DOF remain. The four points are free to translate parallel to the x axis, and for a given x

position of p4, they can rotate about the vertical line through P4 . Note that with four
points on the surface, we already have strong constraints on where the points may lie.
For example, P, may not lie in the shaded region and similar regions on other faces.
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Thus, four points provide some shape information about the surface on which they lie,

since they have this discrimination. This constitutes significant recognition information,

since some objects cannot fit a given set of four points, even if the objects are large. Four

points can be thought of as providing some surface curvature information; for example, a

modeled sphere of only one particular radius fits four given (non-cocircular) points.

Five Points: P5 prevents rotation about the vertical line through p4, leaving only one

DOF; translation parallel to the x axis. The recognition information is also stronger, e.g.,

most sets of five points don't fit any sphere.

Six points: Finally, constraining P6 to lie on the surface as shown prevents all local

relative motion between the model and the six points, since it prevents the x translation

discussed above.

The above discussion shows that a small number (four to six) of range points can

contain sufficient information to greatly reduce the set of possible identities and poses of

the object from which they were sampled. In particular, in the absence of the degeneracy

effects of object symmetries, the number of remaining DOF in object pose is 6-n for n

range points, if the object is not eliminated as a recognition candidate. We will next con-

sider some special classes of modeled objects whose symmetries allow easier elimination

of candidate models during recognition.

1.3 Some Examples of Object Symmetries

Example 1; n points on a planar surface, n > 2. In this case there are three DOF,

corresponding to rotation and translation in the plane, regardless of the value of n. This,

along with the ubiquity of planar surfaces, makes recognizing planar regions of a

object's surface the subject of specialized algorithms [8]. Note that in the case of zero

uncertainty, four points are sufficient to either eliminate or provide strong evidence for a

planar surface.

Example 2; n points on a spherical surface, n > 2. This is a generalization of example 1,

with three DOF. Again, four points are sufficient to either eliminate or provide strong

evidence for a sphere of given radius.

Example 3; n points on a cylinder, n > 3. There are two DOF, rotation about the axis and

translation along the axis.

Example 4; n points at arbitrary places on a helical cylinder, n > 4. The "spring" shaped

object can turn like a screw in one DOF regardless of n. The same numbers apply to the

torus and the general prism (linear extrusion).

4



What These cases have in common is that the number of DOF is greater than 6-n.

Specifically, as successive range points are introduced, the number of DOF is succes-
sively reduced until the number of DOF characteristic of the symmetry is reached, and it
remains fixed as more range points are introduced. One implication of this is that it is

possible to recognize certain objects with a high degree of confidence with a very small

number of (sufficiently accurate) range measurements. For example, four points either
decisively eliminate a sphere of a given radius, or provide strong evidence of a match.

Also, only three of those points allow localization of the sphere, insofar as we don't care
about the three rotational degrees of freedom associated with the symmetry. In the case

of a cylinder of given radius, five points either decisively eliminate the object or provide
strong evidence of a match. The knowledge that a certain four points lie on the cylinder
suffices to determine its pose. Six points can eliminate a cylinder of arbitrary radius. To
see this clearly, consider placing Pl, p2 and P3 on a cylinder and sliding the cylinder on
them until P4 makes contact, if possible. This clearly can happen for a range of radius
values, in general. But p5 will then lie on the surface only if the cylinder has one particu-
lar radius value. Once we hypothesize the radius that makes the five points fit, if P6

doesn't fit, all cylinders are eliminated. Many other cases are worthwhile to study, but
are left to the interested reader.

1.4 Recognition with a Small Number of Range Points; Discrete Analysis

Now we will perform an exercise similar to that of section 1.2, representing pose
combinatorially (and approximately) by the association of range points with model
facets, instead of by six coordinates. We will use as the model a polyhedral approxima-
tion of the object, using a large (say > 1000) number M of facets, each of which is com-

pact, so that its maximum linear dimension is small. The reason for this is to make the
range of distances between a point on one given facet and a point on another as small as
possible. This will then enable us to use the distance between two range points to maxi-
mal advantage in determining where on the surface of the model they could lie. We will

use the term surfel, for surface element, to denote a model patch of this kind, with an
upper bound placed on the ratio of the maximum linear dimension of the facet to the
square root of its area, as a prescription for compactness.

Now consider choosing arbitrarily the set of range points PI, P2, P3, P4, P5, P6)

from the range image. As in section 1.2, we will temporarily ignore grouping and uncer-

tainty considerations. We will make a crude approximate analysis of the combinatorics

of interpreting four range points. Figure 2 represents a modeled object with six range
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points indicated on its surface. We define dij = 11 PP II, the distance in space between

two range points. In attempting to interpret point Pi we note that it could have come

from any one of the M facets of the model. For each of these M 1-interpretations, say

(Pl, fl), P2 can lie only on one of the k surfels overlapping an approximately spherical

shell surrounding surfel fl. Specifically, this shell is the locus of points located a dis-

tance d 12 from any point on the surfel fi. Intuitively, k is typically considerably less

than M. It appears that k is 0 (,-) in the absence of uncertainty. This is supported by

the observation that as M increases, the facet density on the surface increases linearly in

M, while the surface area subtended by the shell is proportional to II/ M, since the max-

imum linear dimension of the surfels, and hence the shell thickness, varies as I/ -ir.

Thus there are usually considerably less than M 2 2-interpretations of two given points Pi

and p2. The preceding arguments suggest 0 (M 3/2 ) 2-interpretations. Now for each 2-

interpretation of Pi and P2, P3 can generally lie only on a member of a very small subset

of facets, since P3 lies at known distances from both P, and P2; d 13 and d 12 , respec-

tively. Thus, it appears that we can typically expect 0 (M 312) 3-interpretations of three

given points Pl, p2 and P3.

For many of the consistent 3-interpretation of P1, P2 and P3, the point P4 will typi-

cally not to be able to lie on any facet. This is because four is the smallest number of

points that cannot be rotated and translated as a rigid body so that they can be made to lie

on any (sufficiently large) surface. That is, they contain some information about the

shape of the surface they lie on, as argued in section 1.2. When P4 is consistent with a

particular 3-interpretaetation, the number of facets it may lie on will typically be very

small. Thus, we can typically expect that the number of consistent 4-interpretations of

four given points P1 , P2, P3 and P4 is less than the number of consistent 3-interpretations

of P1, P2 and p3 . We conjecture that in the absence of uncertainty and certain object

symmetries, this fourth point reduces the number of consistent interpretations by a factor

of 0 (NM'), and that the same applies to ps and P6, so that six points are consistent with

only 0 (1) interpretation. This is supported by the continuous analysis of section 1.2, in

which each point reduces the number of DOF by one. Here, M is the number of values in

a discretization of a 2-D surface. Therefore removing one degree of freedom in the con-

tinuous analysis should correspond to a factor of 0 (1/NrM) in the discrete analysis. If we

considered uncertainty here, then for sufficiently large M the shell would approach con-

stant thickness, and the 0 (I/'M') factors would apparently be replaced by factors of c,

where c is approximately constant and c < 1. See [I] for more thorough combinatorics.

The observations above suggest that if we could interpret at least four range points

simultaneously, we could eliminate the need to generate all those 3-interpretations of
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{ P1, P2, P3 ) that were pruned away when P4 was processed, and generate only those few
interpretations of (P1, P2, P3 , P4 ) that are consistent with the six pairwise distance con-

straints. We would like to make this process a simple table lookup, in which we use

some simple numerical feature of the four points (such as the radius of the fitting sphere)
as an index into a table whose entries are lists of quadruples of model facets matching the
four respective points. However, there are M 4 such quadruples, a prohibitively large
number. This can be reduced to approximately 0 (M3 2) by restricting the relative posi-

tions of the four (or more) points as described in section 2.

2. Tripod Operators

2.1 Mapping Range Points to Model Poses

Having argued that a small number (four or more) nf range points can contain a
great deal of information about the identity and pose of the object on which they lie, we
would like to exploit this with some efficient "points to poses" mapping procedure that

can be applied to a range image. Here are some desired properties of this procedure, and
some comments on how we obtain them:

1. It should be local, in that it operates only on range points within some sufficiently

small region of 3-D space, to facilitate its application to data lying completely within

a single object.

2. It should be computationally efficient. Therefore we want the mapping procedure to
rely as heavily as possible on precomputed lookup tables.

3. It should require a practical amount of storage.
4. It should preserve as much information about pose and identity as possible fr'rn the

original range points used, so that when it is used as part of some complete

recognition/localization system, it will need to be performed a minimal number

of times.

In succeeding sections we introduce a way of achieving these properties. Satisfying

properties 3 and 4 simultaneously was a key issue. The difficulty is seen in Fig. 3a, in
which the mapping is from points in R12 to regions of R30SO (3), which is intractable as

a table lookup even though we are considering only four points, the minimum required to
convey surface shape information. Figure 3b outlines a solution to this problem. The
right hand side represents pose using the well known idea of interpretations, resulting

typically in less than 0 (M 3 2 ) interpretations for M model surfels, for each set of four
points. This parsimony stems from the separation of two kinds of pose information; that
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of the set of points with respect to the rangefinder and that of the model with respect to
the set of points, along with the knowledge that the points lie on the object.

The left side of Fig. 3b introduces a new idea; the structuring of range points during

the process of selecting them by requiring them to satisfy various geometric constraints
relative to one another so that for n points, there are n-3 free parameters describing the
relative positions of the range points. These parameters are features corresponding to

shape properties of the surface. This structuring is accomplished with the tripod opera-
tors described in the following sections. Thus in Fig. 3b a tripod operator first selects

four appropriate samples in a given region of the range image and generates one real
valued feature. This is then mapped via precompiled tables into a set of interpretations of

the four points. Both steps are in constant time.

2.2 A Simple Four Point Tripod Operator

We will now define a specific tripod operator as an introductory example. Consider
the following geometric object, illustrated in Fig. 4a; a set of three points, called feet, and
one line arranged as follows: the points are at the vertices of an equilateral triangle of

edgelength d, and the line, which we will call a probe line, passes through the center of
the triangle and is perpendicular to its plane. We will denote by A, B and C the feet of
any tripod operator. To apply this four-point operator, consider a two-dimensional sur-
face imbedded in three-space. This will be in the form of a computer representation of a
rigid physical object, such as a surface interpolation of a range image, or a surface model

of an object obtained from a computer aided design system or from range images. Now
imagine rotating and translating the operator as a rigid body until its three feet all lie on
the surface, much as in placing a surveyor's transit or a camera tripod. Now if the probe
line associated with the operator intersects the surface at a point denoted by D, the dis-

tance from D to the plane of the triangle can be regarded as a feature value generated by
application of the operator to the surface. If A, B, C, and D fall at position vectors pl,

P2, P3 and P4, respectively, then
((P2-Pl) X (P3-Pl))"' ((P3-P4)

S II((P 2-P) X (P3-Pl)) II

can be used to compute the value of this tripod feature. Like all tripod operator features,
s is an intrinsic property of the object represented by the surface; it depends on the shape

of the object and on where the operator is placed on the object, but not on where the
object and the points are located in any coordinate system. For example, a positive
feature value represents a local depression in the surface, and a negative value represents

a local "bump".
8



Now suppose that the object surface is modeled by M surfels as in section 1.4. Let

us consider the ways that the operator can be placed on the various surfels of the model.

Denote by A, B and C the three feet of the tripod operator, and the intersection of the

probe line with the surface will be called D.

From the discussion of section 1.4, A, B, and C can typically have 0 (M 3"2 ) place-

ments on respective surfels of the model, and for each, the probe line is nearly fixed, so

that the intersection point D can fall on very few (0(1)) surfels. Thus the tripod operator

can be placed on the model in 0 (M 312 ) ways, each yielding a feature value and an associ-

ated 4-interpretation, which we can store in a table indexed by the (discretized) feature

value (see section 2.7). If the operator is later applied to the interpolated surface of a

range image for the purpose of recognizing and locating that modeled object, it yields

points Pi, P2- P3 and P4, corresponding to the tripod operator feet A, B and C, and the

probe point D, respectively, and a resulting feature value. This feature value then can be

used to eliminate from consideration any interpretation not present in the table. If there

is no table entry at all for a certain feature value, the whole model is eliminated, as in the

case of a sphere of the wrong radius, for example. Thus the tripod operator can be a

powerful feature detector for use in a recognition/localization system.

2.3 A General Class of Tripod Operators

We will now define a broad class of tripod operators. An n-point tripod operator

consists of three points A, B, and C, with distances a, b, and c between them, as shown in

Fig. 4b. Also there are n-3 space curves (xI(sI), x2 (s2 ), .... Xn($n_3)) which we call

probe curves. Each probe curve xi(si) is a position vector as a function of a scalar param-

eter si, which represents arc length along the curve. The application of the operator to a

surface results in the values of the n -3 scalars si determining where the probe curves

intersect the surface. They can be regarded as forming a feature vector of length n-3

describing the local shape of the surface. An important general property of tripod opera-

tors is that for any modeled solid, applying an operator everywhere possible on its sur-

face generates a manifold in the feature space with dimensionality not exceeding three.

We can see this by noting that the three feet of a tripod operator can slide on a surface in

three DOF, which parametrize the n-3 features. In cases of object symmetry the dimen-

sionality of the feature space can be zero (sphere), one (cylinder), or 2 (torus, helix or

extrusion). We define the order of an n-point tripod operator to be n-3; the number of

scalar features generated.
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2.4 Linkable Tripod Operators; the Four-Point Case

We now describe a class of tripod operators with particularly interesting properties.

We will start with a four-point instance. The three feet A, B, and C of the tripod are at

the vertices of an equilateral triangle of length d, and a probe curve is formed by a circle

centered at the midpoint of the edge BC and coaxial with it, as shown in Fig. 4c. The

radius is 6-d/2, so that any point D on the circle is at a distance d from both B and C.

When applied to a surface, four point operator returns one parameter value, the angle 0

between the triangles ABC and BDC, where D is a point where the circle intersects the

surface. Our convention is that 0 = 1800 for a planar surface, with 0 > 1800 if the hinge

edge BC looks convex from the rangefinder's viewpoint. The application of the operator

to a surface, yields P1, P2, P3 and p4 as the position vectors of A, B, C and D, respec-

tively, and the scalar feature 0. Note that this operator has a bilateral symmetry. It is

essentially two equilateral triangles joined by a hinge joint at their common edge, and

after it is applied to a surface, it makes little difference which triangle is regarded as the

tripod. This leads to the idea of making a second application of the operator at the three

points P2, p4 and P3 on the surface of a range image, producing a new point P5 as shown
in Fig. 5 and a new feature value 0". Thus for the second application of the operator, A,

B, C and D are at P2 , P4 , P3 and ps, respectively.

Now note that we have succeeded in linking these operators together, so that we can

combine the information gotten from their feature values. If we use the first operator

application to look up the 4-interpretations of Pl, P2, P3 and p4 for some model, and the

second to look up the 4-interpretations of P2, P4, P3 and ps, we can retain the 5-
interpretations consistent with both. This linking procedure can be repeated indefinitely.

Figure 5 shows five operator applications, yielding eight points and five feature values.

This example illustrates the opportunistic growing of links wherever they don't cross

boundaries of image segments (see section 4, steps 1 and 7). One good mechanism for

keeping track of these sets of consistent interpretations is interpretation trees (see Fig. 6),

with the range points pi as the sensor measurements and the surfels as the model ele-

ments, much as in [5]. The difference here is that the constraints among four measure-

ments at a time are included at each new tree level, thus eliminating many branches

without generating them. Also, the constraints are somewhat stronger taken among four

points at once, since a 4-interpretation satisfying the six pairwise constraints separately

might not satisfy them simultaneously, and the latter is enforced by the 4-point operator.

The linking could be done using one or two common points instead of three as

described, but linking three points has the advantage of preserving rigidity; the distance

between any two points in Fig. 5 is known to within the uncertainties arising from finite

surfel size and measurement error. Next we will show that the contents of this section
generalize in a reasonable way to n > 4.

10



2.5 Linkable Tripod Operators; More Than Four Points

We can generalize the 4-poin: linkable tripod operator to any number of points by

attaching additional equilateral triangles to previous ones by hinge joints, as in the 6-

point example of Fig. 4d. Thus points E and F are similar in function to D; after planting

A, B and C on a surface, E and F are moved through their respective circular paths until

they strike the surface, yielding three feature values 01 , 02 and 03 for this 6-point opera-

tor. This is a particularly interesting case, and so we will discuss its properties and

present some experimental results on its application to synthetic range images in section

2.6. It is possible, however, to generalize it to many other kinds of n-point linkable

operators by arbitrarily connecting equilateral triangles to various free edges with hinge

joints. Note that such an operator is sequentially folded onto a surface as one wraps a

gift. Thus it extends the class of operators described in section 2.3, since the circular

probe curves are in general not fixed with respect to the initial triangle ABC defined by
the tripod feet.

The preceding discussion suggests that an n-point linkable operator is similar to a

set of 4-point linkable operators appropriately linked together in the manner of Fig. 5.
The difference is simply that an n-point operator is to be applied as a whole without vary-

ing its structure, whereas a linked set of operators can be constructed in a flexible oppor-

tunistic manner on a range image. Interpretation data can be precompiled (see section

2.7) for the feature values of a single operator, while a set of linked operators requires

explicit merging of the interpretations of its constituent smaller operators.

2.6 Experiments with the linkable six point operator

We have implemented a software system in C on a Sun SPARCstation which allows

the generation of synthetic range images of various solid models and the application of

the 6-point operator to them using the procedure of section 3.1. The solid models are in

the form of unions and intersections of analytic solids represented in the form f(x)<O.

The range data is generated by ray tracing, using binary search to find surfaces at zero-

crossings of the functions f(x), and golden mean search to determine whether various

protrusions are hit or missed. The rays are projected through the points of a rectangular

grid.

The range images are rendered on the CRT as in Figs. 7a,e,g. The simulated

rangefinder was located 20 units above these models, from which the rendered mesh

would appear rectangular. The rectangular projection grid was located midway between
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the rangefinder and the model center. The renderings use one curve per five range pixels.
The 6-point operator can be placed either under manual control or automatically with
uniform random distribution in the image index coordinates. There are three free vari-
ables here, as described in section 3.1. The other six figures show resulting points in the

feature space spanned by angD a 01, angE 02, angF 03. The vertical bar indicates an
interval of angF for which points are displayed in a projection onto the plane of angD and
angE. Note that this operator posseses a 3-fold symmetry about the axis
angD=angE=angF, although it would be easier to visualize if our projections were along

that axis in the displays.

Figure 7a shows a 900 concave dihedral with one operator placement displayed.
Figure 7b shows the feature points from 10,000 placements. Note that the display is

really that of a 5-point operator (two features), since angF is projected. However, in Fig.
7c a slice of the point cloud at angF = 1360 shows the 2-D nature of the manifold in
feature space generated by this extruded shape, consistent with the discussions of sec-
tions 1.3 and 2.3. Figure 7d shows points with angF > 1800. The example placement in
Fig. 7a produces such a point, note that the upper operator probe (F) is in the groove so

that angF > 1800. this forces the lower left and right probes to climb the planes, so that
angD and angE are less than 1800, as seen in the data of Fig. 7d. Figure 7e shows a half

cylinder of radius I on a plane. Figure 7f superimposes data from random placements of
operators of three edgelengths; d = .4, .6, .8 (We could have varied the cylinder radius for
the same effect). Each d value yields a distinct 1-D oval curve for placements falling on
the cylinder. The placements falling partly on the plane give 2-D data, and those entirely

on the plane give the center point (1800,1800,1800).

The cylinder data is consistent with sections 1.3 and 2.3; from section 1.3, we can
slide the cylinder in two DOF with respect to the six points without breaking contact or
changing the 0i values. Therefore, manipulating the remaining degree of freedom,
corresponding approximately to rotating the operator within the plane of its feet, will
generate a one-dimensional region in feature space. Note the small fraction of feature

space occupied by these two symmetrical examples (actually zero for perfect data, small
for realistic measurement errors from state-of the-art rangefinders). The cylinder exam-

ple confirms the argument in section 1.3 that five points can eliminate or provide strong
evidence of a cylinder of given radius, since the oval is sparse in two dimensions. Also,

in the cylinder case, since the projection of the data onto angD spans a limited angle, four
points can sometimes eliminate a cylinder, e.g., when angD alone is outside that range.

This latter point applies to some extent to all objects.
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Figure 7g is a half ellipsoid lying on the plane. Its three semi-axes are N = .5,

.r" = .632, and .1 = .774. The operator edge length d is .4. The dark lower right clus-
ter in Fig. 7h is from placements completely on the ellipsoid and is three-dimensional, as

expected from the lack of appropriate object symmetries. Finally, Fig. 7i shows a 2-D
manifold generated from a sinusoidal "washboard" shape, like a corrugated roof. The
period is ir/5 = .628, amplitude =.1, and d = .25 for the operator. Again the extrusion

yields two DOF in feature space.

2.7 A Data Structures Relating Tripod Features to Models

The use of tripod operators in a vision system requires the efficient access of model
information pertinent to given tripod feature values. This can be achieved by construct-

ing in offline computations the data structure illustrated in Fig. 8. It consists of an array
indexed by the feature values of the tripod operator. For example, in the case of the six-
point linkable tripod operator, the three angular features are discretized at a resolution

appropriate for the sensor uncertainty of our rangefinder and the resolution of the surface

model They can then be used as indices into a three index array. Each array element
consists of the number of models which can possibly produce the given feature values,
given noise tolerances, the average number of consistent placements over these models,

and a pointer to the set of these models. This set is is an array whose elements give the
name of a model (an integer), which points to the number of tripod placements on that
model that could have produced the feature values to an array containing the set of place-

ments of the tripod operator on the model consistent with the feature values.

3. Computation of Tripod Operator Features

3.1 Calculation of Tripod Operators on Range Images

Since the efficient application of tripod operators to range images is crucial to their

effective use in a vision system, we will present a fast algorithm for doing this. We will
treat the case of linkable tripod operators. We assume that a range image is given, along
with formulas relating the coordinates of an arbitrary point in space with the two pixel

indices of the range image. In a nutshell, the procedure finds the intersection between a
test curve and the range image by binary search along the test curve until the distance

between the some point on the test curve and the corresponding range surface point is
sufficiently small.

We denote the range pixel whose horizontal and vertical indices are i and j, respec-
tively, by the 3-vector ry. This vector is given in a coordinate system in which the
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viewpoint of the rangefinder is at the origin. We define r(h,v) as an interpolated range
image such that r(h,v) = rij if h=i and v=j. For non-integer values of h and v we will use
triangulated polyhedral interpolation. Each ij pair will yield two triangular facets; one
with vertices at the range pixels (ij), (i+lj), and (ij+l), and one with vertices at (i+l1j),
(ij+l), and (i+lj+l). We denote by h(x) and v(x) the real valued functions mapping an
arbitrary point x to the respective parameters of the corresponding point on the interpo-
lated range image. That is, the ray from the origin of the rangefinder through x also
passes through the range point r(h,v), where h = h(x) and v = v(x).

Now, to place a tripod operator on the interpolated range image, we firs: plae point
a of the operator at an arbitrary range point. Then we chose an arbitrary direction in the
hv plane and search for a point b lying on the interpolated range image at a euclidean dis-

tance d from point a. We do this by binary search along a circle of radius d centered at a
for a point for a point b whose z component equals that of r(h (b),v(b)). The circle is
oriented so that it is viewed edge-on from the rangefinder origin.

The third point c must be at a distance d from both a and b. It is calculated by
binary search along a circle of radius d'-/2 centered at (a+b)/2 for a point for a point c
whose z component equals that of r(h (c),v(c)). The circle is oriented coaxially with the

line through a and b. Any further points in a linkable tripod operator can be computed in
exactly the same way; by chosing two existing points and searching along the circle that
symmetrically bisects the line segment joining them.

Note that although there are plenty of pixels to chose from in a typical range image,
the tripod operator choses only points related as described above, so that interpolated
points between range pixels are often selected. We will see that this slightly awkward
procedure is very well compensated for by the operator's advantages.

3.2 Calculation of Data Structures from Models

Many of the uses of tripod operators that we discuss require the availability of a data
structure (see section 2.7) which relates tripod feature values to the possible placements

of the operator on various models. This data structure is to be computed offline, so that
the processing time is not so critical, but still care must be exercised to avoid prohibitive
computation time. We will outline here one possible way to process a given triangle-

faceted polyhedral model with the four point linkable operator described in section 2.4.

1. Find the set S of all pairs of facets such that there exists a pair of points, one in each
facet, separated by a distance d. This can be done in M(M-1)12 steps. Store these so
that each facet is a pointer to an ordered list of the 0 (1-M) facets located a distance d
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away. Altogether, there will be typically 0 (M 312 ) pairs in S, from the discussion of sec-

tion 1.4.

2. Find the set Q of all quadruples of facets such that five of the six pairs of facets in the

quadruple are in S. The remaining pair will correspond to A and D from figure 4c. To

do this, associate with A and B, respectively, each pair of facets in S. For each associa-

tion, find facet C by intersecting the set of facets at a distance d from facet A with those

at a distance d from facet B. Since these two sets are ordered, their intersection can be

found in linear time, yielding 0 (N-) time to find facet C for each A,B pair. Then D is

computed analogously to C. Thus Q can be computed in 0 (?2) time.

3. For each quadruple in Q, we must place the four points of the operator on the four

corresponding facets in a representative number of ways to obtain an estimate of the

range of values of 0 obtainable. An exact computational geometry approach seems

impractically complicated, so we will use a sampling approach. Denote by V,. v2 and V3

the vertices of a facet. Then points sampled from that facet can be generated by

p = V1 + U (V2 -V 1 ) + V (V 3 -V1 ),

where

0.u:l, Ov:1, and u+v < 1.

If the scalar parameters are varied in steps of .25, for example, we get 15 sample points.

Then the four operator points can be placed on those sample points in the four respective

facets which are mutually separated by d±e (except of course, A and D). The tolerance e

is intended to accommodate uncertainty due to imperfect modeling, imperfect range

measurement and the spacing between facet sample points. It should be large enough so

that every possible association of a 0 value and a 4-interpretation is covered, to ensure

no missed hypotheses when performing recognition and localization.

4. Use of Linkable Tripod Operators in a Vision System

We will now outline a particular way to build a recognition and localization system

using tripod operators in conjunction with other techniques. This exercise will illustrate

what properties of the operators are expected to have the most practical value. There are

many design choices in such a system, and so don't claim that the choices are optimal in

this example.
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The vision problem addressed is as follows. We start with a set of N rigid objects
for which we have triangle-faceted polyhedral models. We now are allowed to perform
some offline processing of the models, producing data structures that will facilitate pro-
cessing at recognition time. The system is then to be presented with a dense range image
of a scene containing some subset of the M objects in arbitrary configuration. Then it is
to recognize and localize as many of the objects as it can, as rapidly as possible.

First, in an offline process, the models are processed with six-point tripod operators

to yield data structures relating tripod feature values with possible placements of tripod

operators on the various modeled objects, as described in section 3.2. Then, when a
range image of a scene is to be interpreted, execute the following steps:

1. Subject the range image to a grouping or segmentation procedure which results in the
labeling of each pixel as a member of a region. We want these regions to have the pro-

perty that no two pixels in the same region lie on different objects. Also, we would like
to have as few as possible regions lying on any given object. Some good cues to boun-

daries between regions are depth discontinuities and concave slope discontinuities.

Methods for range image segmentation are treated elsewhere [7,8,9].

2. Place the tripod operator at a number of random locations in the range image, retain-
ing only those placements for which all six points lie in the same region (from step 1).
For each placement, look up the number m, of models consistent with its feature value.

The phrase look up refers here to the data structure computed offline.

3. Select for further processing the region R containing the placement with minimal mc,

as long as mc * 0.

4. Place the tripod operator at a number of additional random locations within the region

R. Look up the set of models consistent with each placement and compute their intersec-

tion I. If I is empty, mark the region R "inconsistent with models" so that it will not be

processed further, and go to step 3.

5. Select a model M from the set I, and look up the number of consistent interpretations

on M for each tripod placement we have made in R. Select the placement P1 having the
smallest number of consistent interpretations. This can be thought of as the automatic

selection of a distinctive local feature, as opposed to using predefined specific kinds of

features [10].
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6. Look up the set SI of interpretations of P1 on M, and express them as an interpretation

tree. The depth of this tree is six, since we are using a six-point tripod operator.

7. Find a new placement P2 of the tripod operator in R such that P1 is linked to P2 via
three common points, and look up the set S2 of consistent interpretations of P2 on M.
Delete those paths in the interpretation tree giving interpretations inconsistent with the

interpretations S2. Extend the interpretation tree to represent the constraints of 52. The
interpretation tree now has depth nine.

8. Repeatedly link new operator placements to the existing ones until one of the follow-

ing conditions is true:

a. The interpretation tree is empty (this model is inconsistent with these points); go

to step 5 with a different model M from I.

b. A computation budget is exceeded; go to step 3 for a different region R.
c. The number of partial interpretations on M is less than some prescribed constant;
do model test for each interpretation, using lots of pixels. Do gradient descent on
best interpretations. If no survivors, go to step 5 to get a new M from I; else label R

with the candidate interpretations and go to step 5.
9. Go to step 3 if uninterpreted regions remain; else terminate.

Note that a model test for k pixels can be done in O(k) time independently of object
complexity if a fast proximity model of the object is available, such as a voxel model
storing distances from every point to the model, at some cost in storage. More compact
proximity models might be feasible using a few stored analytic distance formulas
indexed by location. Also note that in the case of an operator placing points on more
than one object, intuition suggests that this can frequently be caught by a failed interpre-

tation, as supported by [1], or by the model test.

S. Conclusions and Future Directions

We have introduced a new class of operators for range images and made various
arguments about their properties. We have described computational procedures for
applying the operators to models and range images and outlined ways to use them in a
vision system. They were experimentally applied to simulated range images, verifying
some of the properties predicted.

Tripod cperators were shown to generate manifolds of dimensionality not exeeding

three in feature space of any order. They provide a way to measure in constant time the

distinctiveness of a local region of a range image, in terms of both the number of models
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eliminated and the number of placements on the models eliminated. The former is
expected to lead to approximately O(log(M)) time screening of a library of M objects,
until a set of locally similar objects is reached. Tripod operators make the point-to poses
mapping problem amenable at least partly to treatment by lookup tables, and are compa-
tible with the method constrained search of interpretation trees, allowing the use of other
constraints along with the tripods.

These operators suggest a great variety of future work. Their use in a complete
vision system needs to be studied experimentally. Many specific properties, such as the
amount of overlap in feature space between various objects, and dependence on sensor
noise, need to be tested. These and the distinctiveness of feature values might well be
studied information-theoretically. Traditional statistical pattern recognition might be
very effective for model-free classification, since tripod operators generate low-
dimensional, highly informative feature vectors. For example, a torus-like discriminate

surface in a 3-D feature space could detect a cylinder. For higher order feature spaces
than three, lookup tables are not even feasible, and analytic approximations of the 3-D
subspaces for various objects might be very effective. This could lead to extremely fast
recognition; eight points can be very discriminating for high precision range data, and
their resulting five feature values might be tractable, since only 3-D subspaces need to be
characterized. Also, mechanical tactile tripod operators might enable very fast tactile

recognition.

Some flexible objects might be recognizable with some variant of the tripod opera-
tor, since when linked via three points they enforce local shape constraints more strongly
than global ones, thus providing a potential method of approximating the continuum
mechanics of bending an object.

In the near future, we plan to generate for various tripod operators, modeled objects,
and amounts of noise the set of possible interpretations consistent with each value of the
feature vector for that operator. This will then allow us to better answer such questions as
how accurate a rangefinder is required for various recognition problems, what kind of tri-
pod operators are most useful, how fine a surface tessellation is required in the model,
and what speedup over the pure interpretation tree approach is provided. We also will
study the scale problem; how many sizes of operators need to be used for a given library
of objects, and how they are best used together in a system. We will study these prob-
lems in the context of building a high performance recognition system.
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Pi P3

Fig. I -Six Points Placed on a Cube. Requiring each ro lie on the cube successively
reduces the number of DOF from 6 to 0.
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Fig. 2 - Six range points on a finely and compactly triangulated surface model, with M surface elements
(surfels). We Conjecture that in the absence of uncertainty and certain symmetries, three points

have O(M 31 2) consistent intepretations, four points have O(M), five
points have O('M) and six points have 0(l).
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Segmented Regionj

Fig. 5 - Linkable five 4-point operator placements in order to efficiently find the
8-interpretations consistent with both
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Fig. 6 - Review of the use of the interpretation tree to find matches of range points pi to model

patches (surfels) fj such that geometrical relations among the pi are consistent with those among the
corresponding f. A tree node is a pairing (pi, fj).
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Fig. 7 -Data: 6-point operators applied to simulated range images. (a) 900 dihedral, with operator.
(b) Full feature space for (a). (c) Slice at angF = 1360 showing that (a) yields 2-D region. (d) angF
> 1800 implies angle D & angE < 1800 in (a). (e) Half cylinder on plane. (f) Cylinder yields
distinctive 1 -D region (oval space curve) for each of 3 d values. (g) Ellipsoid (h) Dark lower cluster

is 3-D region for ellipsoid. (i) Feature data for a sinusoidal "washboard" surface.
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Fig. 8 - Data structures indexing pose and identity information by tripod feature values, to be
computed offline from models, and used during recognition/localiation.
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